Professor
Email: thliu@hust.edu.cn
Academic Area: Thermophysics
Academic Interests: Nano/microscale energy transport and conversion; Electron-phonon and phonon-phonon interactions; Atomistic simulations.
Education
Ph.D. (06/2012), Institute of Applied Mechanics, National Taiwan University
M.S. (06/2008), Institute of Applied Mechanics, National Taiwan University
B.S. (06/2006), Department of Mechanical Engineering, National Central University
Professional Experience
Professor, (02/2019~Present), School of Energy and Power Engineering, Huazhong University of Science and Technology
Postdoc (01/2015~01/2019), Department of Mechanical Engineering, Massachusetts Institute of Technology
Postdoc (05/2013~12/2014), Center of Advanced Studies in Theoretical Sciences, National Taiwan University
Publications
* corresponding author; ¶ co-first author
1.J. Zhang, J. Zhang, G. Bao, Z. Li, X. Li*, T. H. Liu*, and R. Yang*, “Prediction of phonon properties of cubic boron nitride with vacancy defects and isotopic disorders by using a neural network potential”, Applied Physics Letters 124, 152206-1-6, 2024.
2.Y. Zhu¶, T. H. Liu¶, W. Zhou, M. Shi, M. Wu, P. Shi, N. Zhao, X. Li, Z. Zhang, D. Zhang, Y. Lv, W. Wu, H. S. Tsai, G. Lai, L. Fu, H. Karimi-Maleh, H. Li, N. Jiang, C. Ye, and C. T. Lin, “An on-site transformation strategy for electrochemical formation of TiO2 nanoparticles/Ti3C2Tx MXene/reduced graphene oxide heterojunction electrode controllably toward ultrasensitive detection of uric acid”, Small Structures (Accepted)
3.W. Zhou, T. H. Liu, and B. Song, “Isotope engineering of carrier mobility via Fröhlich electron-phonon interaction”, Physical Review B: Letters 109, L121201-1-7, 2024.
4.J. Zhang, X. Wang, F. Yang, J. Wu, Y. Wang, B. Song*, and T. H. Liu*, “Bulk-like phonon transport in multilayer graphene nanostructures with consecutive twist angles”, Surfaces and Interfaces 45, 103893-1-10, 2024.
5.J. Zhang, H. Zhang, J. Wu, X. Qian, B. Song, C. T. Lin*, T. H. Liu*, and R. Yang*, “Vacancy-induced phonon localization in boron arsenide using a unified neural network interatomic potential”, Cell Reports Physical Science 5, 101760-1-19, 2024.
6.G. Li, J. Tang, J. Zheng, Q. Wnag, Z. Cui, K. Xu, J. Xu, T. H. Liu*, G. Zhu*, R. Guo*, and B. Li, “Convergent thermal conductivity in strained monolayer graphene”, Physical Review B 109, 035420-1-10, 2024.
7.H. Guo, W. Yan, J. Sun, Y. Pan, H. He, Y. Zhang, F. Yang, Y. Wang, C. Zhang, R. Li, L. Liu, S. Bai, W. Wang, Y. Ye, T. H. Liu, J. Shiomi, X. Zhang, and B. Song, “Four-phonon scattering and thermal transport in 2H-MoTe2”, Materials Today Physics 40, 101314-1-7, 2024.
8.F. Jia, S. Zhao, J. Wu, C. Lin*, T. H. Liu*, and L. M. Wu*, “Cu3BiS3: two-dimensional coordination induces out-of-plane phonon scattering enabling ultralow thermal conductivity”, Angewandte Chemie International Edition 135, e202315642-1-6, 2023. (Very Important Paper)
9.H. Uchiyama, T. H. Liu, T. Ono, J. Fujise, B. Liao, S. Ju, G. Chen, and J. Shiomi, “Quantifying doping-dependent electron-phonon scattering rates in silicon by inelastic x-ray scattering and first-principles lattice dynamics”, Physical Review Materials 7, 104601-1-7, 2023.
10.T. Wang, X. Duan, H. Zhang, J. Ma, H. Zhu, X. Qian, J. Y. Yang*, T. H. Liu*, and R. Yang*, “Origins of three-dimensional charge and two-dimensional phonon transports in Pnma phase PbSnSe2 thermoelectric crystals”, InfoMat 5, e12481-1-12, 2023.
11.G. Sun, J. Ma, C. Liu, Z. Xiang, D. Xu*, T. H. Liu*, and X. Luo, “Four-phonon and normal scattering in 2D hexagonal structures”, International Journal of Heat and Mass Transfer 215, 124475-1-6, 2023.
12.Y. Chen, Q. Huang, T. H. Liu, X. Qian, and R. Yang, “Effect of solvation shell structure on thermopower of liquid redox pairs”, EcoMat 5, e12385-1-12, 2023. (Cover Image)
13.L. Chen¶, T. H. Liu¶, X. Wang, Y. Wang, X. Cui, Q. Yan, L. Lv, J. Ying, J. Gao, M. Han, J. Yu, C. Song, J. Gao, R. Sun, C. Xue, N. Jiang, T. Deng, K. Nishimura, R. Yang, C. T. Lin, and W. Dai, “Near-theoretical thermal conductivity silver nanoflakes as reinforcements in gap-filling adhesives”, Advanced Materials 35, 2211100-1-13, 2023.
14.J. Wu, H. Zhang, T. Wang, X. Qian, B. Song*, T. H. Liu*, and R. Yang*, “Ab initio study of pressure-dependent phonon heat conduction of cubic boron nitride”, International Journal of Heat and Mass Transfer 208, 124092-1-10, 2023
15.T. Lu, B. Wang, G. Li, J. Yang, X. Zhang, N. Chen, T. H. Liu, R. Yang, P. Niu, Z. Kan, H. Zhu, and H. Zhao, “Synergistically enhanced thermoelectric and mechanical performance of Bi2Te3 via industrial scalable hot extrusion method for cooling and power generation applications”, Materials Today Physics 32, 101035-1-10, 2023
16.Z. Xiong, Z. Wang, W. Zhou, Q. Liu, J. F. Wu*, T. H. Liu*, C. Xu, and J. Liu*, “4.2 V polymer all-solid-state lithium batteries enabled by high-concentration PEO solid electrolytes”, Energy Storage Materials 57, 171-179, 2023.
17.Y. Wei, T. H. Liu, W. Zhou, H. Cheng, X. Liu, J. Kong, Y. Shen, H. Xu, and Y. Huang, “Enabling all-solid-state Li metal batteries operated at 30 °C by molecular regulation of polymer electrolyte”, Advanced Energy Materials 13, 2203547-1-12, 2023
18.Y. Dai, W. Zhou, H. J. Kim, Q. Song, X. Qian, T. H. Liu*, and R. Yang*, “Simultaneous enhancement in electrical conductivity and Seebeck coefficient by single- to double-valley transition in a Dirac-like band”, npj Computational Materials 8, 234-1-8, 2022.
19.W. Zhou, Y. Dai, J. Zhang, B. Song*, T. H. Liu*, and R. Yang*, “Effect of four-phonon interaction on phonon thermal conductivity and mean-free-path spectrum of high-temperature phase SnSe”, Applied Physics Letters 121, 112202-1-6, 2022. (Editor’s pick)
20.X. Tan¶, T. H. Liu¶, W. Zhou, Q. Yuan, J. Ying, Q. Yan, L. Lv, L. Chen, X. Wang, S. Du, Y. J. Wan, R. Sun, K. Nishimura, J. Yu, N. Jiang, W. Dai, and C. T. Lin, “Enhanced electromagnetic shielding and thermal conductive properties of polyolefin composites with a Ti3C2Tx MXene/graphene framework connected by a hydrogen-bonded interface”, ACS Nano 16, 9254-9266, 2022.
21.X. Qian, T. H. Liu, and R. Yang, “Confinement effect on thermopower of electrolytes”, Materials Today Physics 23, 100627-1-10, 2022.
22.T. H. Liu*, J. Zhou, Q. Xu, X. Qian, B. Song, and R. Yang*, “Significant suppression of phonon transport in polar semiconductors owing to electron-phonon-induced dipole coupling: an effect of breaking centrosymmetry”, Materials Today Physics 22, 100598-1-7, 2022.
23.W. Zhou, Y. Dai, T. H. Liu*, and R. Yang*, “Effects of electron-phonon intervalley scattering and band non-parabolicity on electron transport properties of high-temperature phase SnSe: an ab initio study”, Materials Today Physics 22, 100592-1-8, 2022.
24.Q. Xu, J. Zhou, T. H. Liu, and G. Chen, “First-principles study of all thermoelectric properties of Si-Ge alloys showing large phonon drag from 150 to 1100 K”, Physical Review Applied 16, 064052-1-12, 2021.
25.J. Ying, X. Tan, L. Lv, X. Wang, J. Gao, Q. Yan, H. Ma, K. Nishimura, H. Li, J. Yu, T. H. Liu, R. Xiang, R. Sun, N. Jiang, C. Wong, S. Maruyama, C. Lin, and W. Dai, “Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates”, ACS Nano 15, 12922-12934, 2021.
26.W. Dai, L. Lv, T. Ma, X. Wang, J. Ying, Q. Yan, X. Tan, J. Gao, C. Xue, J. Yu, Y. Yao, Q. Wei, R. Sun, Y. Wang, T. H. Liu, T. Chen, R. Xiang, N. Jiang, Q. Xue, C. P. Wong, S. Maruyama, and C. T. Lin, “Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management”, Advanced Science 8, 2003734-1-15, 2021.
27.Q. Xu, J. Zhou, T. H. Liu, and G. Chen, “Effect of electron-phonon interaction on lattice thermal conductivity of SiGe alloys”, Applied Physics Letters 115, 023903-1-4, 2019.
28.Z. Ding, J. Zhou, B. Song, M. Li, T. H. Liu, and G. Chen, “Umklapp scattering is not necessarily resistive”, Physical Review B: Rapid Communications 98, 180302(R)-1-6, 2018.
29.T. H. Liu, B. Song, L. Meroueh, Z. Ding, Q. Song, J. Zhou, M. Li, and G. Chen, “Simultaneously high electron and hole mobilities in cubic boron-V compounds: BP, BAs and BSb”, Physical Review B: Rapid Communications 98, 081203(R)-1-7, 2018.
30.F. Tian, B. Song, X. Chen, N. K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou, T. H. Liu, M. Goni, Z. Ding, J. Sun, G. A. G. U. Gamage, H. Sun, H. Ziyaee, S. Huyan, L. Deng, J. Zhou, A. J. Schmidt, S. Chen, C. W. Chu, P. Y. Huang, D. Broido, L. Shi, G. Chen, and Z. Ren, “Unusual high thermal conductivity in boron arsenide bulk crystals”, Science 361, 582-585, 2018.
31.J. Zhou, H. Zhu, T. H. Liu, Q. Song, R. He, J. Mao, Z. Liu, W. Ren, B. Liao, D. J. Singh, Z. F. Ren, and G. Chen, “Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers”, Nature Communications 9, 1721-1-9, 2018.
32.Z. Liu, J. Mao, T. H. Liu, G. Chen, and Z. Ren, “Nano-microstructural control of phonon engineering for thermoelectric energy harvesting”, MRS Bulletin 43, 181-186, 2018.
33.T. H. Liu, J. Zhou, M. Li, Z. Ding, Q. Song, B. Liao, L. Fu, and G. Chen, “Electron mean-free-path filtering in Dirac material for improved thermoelectric performance”, Proceedings of the National Academy of Sciences of the United States of America 115, 879-884, 2018.
34.F. Tian, B. Song, B. Lv, J. Sun, S. Huyan, Q. Wu, J. Mao, Y. Ni, Z. Ding, S. Huberman, T. H. Liu, G. Chen, S. Chen, C. W. Chu, and Z. Ren, “Seeded growth of boron arsenide single crystals with high thermal conductivity”, Applied Physics Letters 112, 031903-1-4, 2018.
35.Z. Ding, J. Zhou, B. Song, V. Chiloyan, M. Li, T. H. Liu, and G. Chen, “Phonon hydrodynamic heat conduction and Knudsen minimum in graphite”, Nano Letters 18, 638-649, 2018.
36.M. Li, Q. Song, W. Zhao, J. A. Garlow, T. H. Liu, L. Wu, Y. Zhu, J. Moodera, M. H. W. Chan, G. Chen, and C. Z. Chang, “Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures”, Physical Review B: Rapid Communications 96, 201301(R)-1-5, 2017.
37.Q. Song, T. H. Liu, J. Zhou, Z. Ding, and G. Chen, “Ab initio study of electron mean free paths and thermoelectric properties of lead telluride”, Materials Today Physics 2, 69-77, 2017. (Editor’s choice)
38.M. Li, Q. Song, T. H. Liu, L. Meroueh, G. Mahan, M. S. Dresselhaus, and G. Chen, “Tailoring superconductivity with quantum dislocations”, Nano Letters 17, 4604-4610, 2017.
39.T. H. Liu, J. Zhou, B. Liao, D. J. Singh, and G. Chen, “First-principles mode-by-mode analysis for electron-phonon scattering channels and mean free path spectra in GaAs”, Physical Review B 95, 075206-1-11, 2017.
40.T. H. Liu and C.C. Chang, “Anisotropic thermal transport in phosphorene: effects of crystal orientation”, Nanoscale 7, 10648-10654, 2015.
41.Y. C. Chen, S. C. Lee, T. H. Liu*, and C. C. Chang*, “Thermal conductivity of boron nitride nanoribbons: anisotropic effects and boundary scattering”, International Journal of Thermal Sciences 94, 72-78, 2015.
42.T. H. Liu, Y. C. Chen, C. W. Pao, and C. C. Chang, “Anisotropic thermal conductivity of monolayer MoS2 nanoribbons: chirality and edge effects”, Applied Physics Letters 104, 201909-1-5, 2014.
43.T. H. Liu, C. W. Pao, and C. C. Chang, “Mechanical mutability of polycrystalline graphene from atomistic simulations”, Computational Materials Science 91, 56-61, 2014.
44.T. H. Liu, S. C. Lee, C. W. Pao, and C. C. Chang, “Anomalous thermal transport along grain boundaries of bicrystalline graphene nanoribbons from atomistic simulations”, Carbon 73, 432-442, 2014.
45.T. H. Liu, C. W. Pao, and C. C. Chang, “An analytical model for calculating thermal properties of two-dimensional nanomaterials”, Applied Physics Letters 103, 171909-1-5, 2013.
46.T. H. Liu, C. W. Pao, and C .C. Chang, “Thermal response of grain boundaries in graphene sheets under shear strain from atomistic simulations”, Computational Materials Science 70, 163-170, 2013.
47.M. Y. Lin, W. C. Guo, M. H. Wu, P. Y. Wang, T. H. Liu, C. W. Pao, C. C. Chang, S. C. Lee, and S. Y. Lin, “Low-temperature grown graphene films by using molecular beam epitaxy”, Applied Physics Letters 101, 221911-1-4, 2012.
48.T. H. Liu, C. W. Pao, and C. C. Chang, “Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations”, Carbon 50, 3465-3472, 2012.
49.C. W. Pao, T. H. Liu, and C. C. Chang, D. J. Srolovitz, “Graphene defect polarity dynamics”, Carbon 50, 2870-2876, 2012.
50.A. Y. Lu, S. Y. Wei, C. Y. Wu, Y. Hernandez, T. Y. Chen, T. H. Liu, C. W. Pao, F. R. Chen, L. J. Li, and Z. Y. Juang, “Decoupling of CVD graphene by controlled oxidation of recrystallized Cu”, RSC Advances 2, 3008-3013, 2012.
51.T. H. Liu, G. Gajewski, C. W. Pao, and C. C. Chang, “Structure, energy, and structural transformations of graphene grain boundaries from atomistic simulations”, Carbon 49, 2306-2317, 2011.
Awards:
Best Ph.D. Dissertation Award (2012), Society of Theoretical and Applied Mechanics of Taiwan